An Introduction to Neural Networks

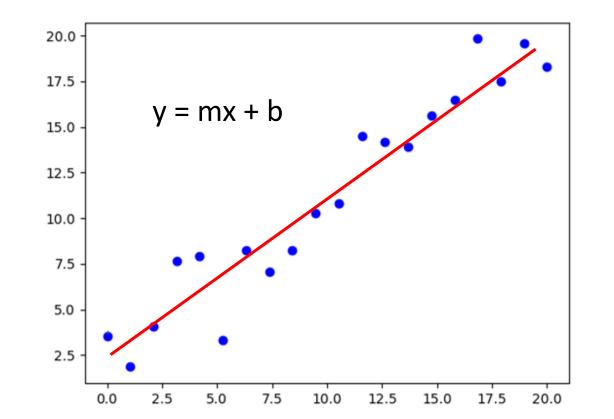
Interactive python notebook!

Bjorn Burkle

Outline

- Traditional Fitting
- Basics of Neural Networks
 - Fully connected (dense) networks
 - Convolutional Networks
- Other common networks

- Traditionally, we learn to fit data via linear regression
 - Start with some data
 - Give your computer an assumed function
 - Computer uses an algorithm to "learn" the best set of coefficients which fit your data
- But what is the computer the computer actually doing?

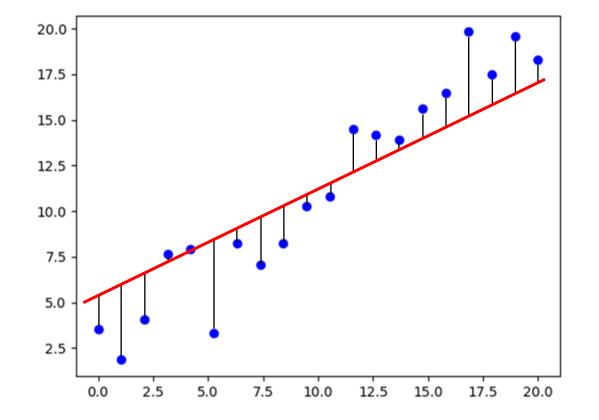


- 1. Start with some data
- 2. Supply a function which should fit your data

• y = mx + b

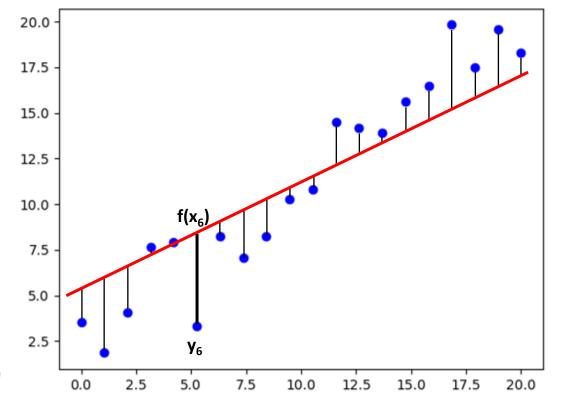
- 3. Computer makes an initial guess at coefficients
- Computer calculates a metric which tells you how bad your fit is

• MSE,
$$\chi^2$$
, etc



- 4. Computer calculates a metric which tells you how bad your fit is
 - *MSE*, χ^2 , etc $MSE = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$
- 5. Computer calculates *gradient* of the metric for each variable

$$\frac{\delta(MSE)}{\delta\beta_j} = \frac{2}{N} \sum_{i=1}^N \frac{\delta f(x_i)}{\delta\beta_j} (f(x_i) - y_i)$$



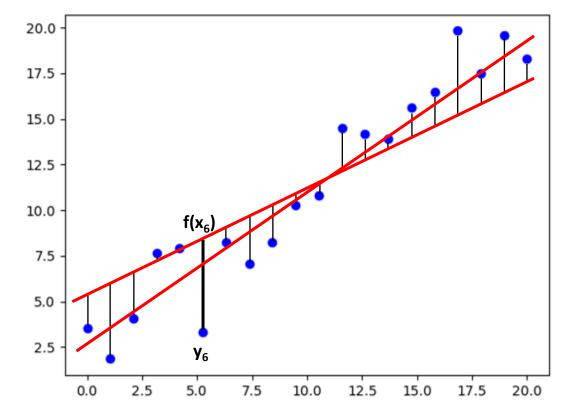
6. Computer simultaneously minimizes the *gradient* for all variables

$$\frac{\delta(MSE)}{\delta m} = \frac{2}{N} \sum_{i=1}^{N} x_i ((mx_i + b) - y_i)$$

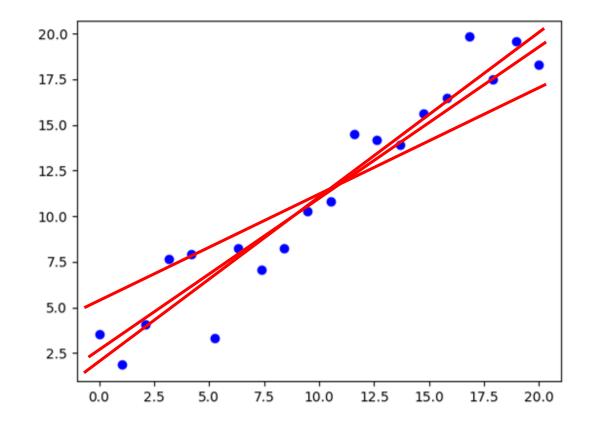
$$\frac{\delta(MSE)}{\delta b} = \frac{2}{N} \sum_{i=1}^{N} ((mx_i + b) - y_i)$$

7. Adjust variables in downward direction of *gradient*

$$m^{k+1} = m^k + \Delta_m$$
$$b^{k+1} = b^k + \Delta_b$$



- 8. Procedure can be iterated many times
 - Often stops once the fit falls into a minimum, i.e. the gradient stops decreasing



Linear fitting can be broken down into the following steps:

- 1. Define a function which maps $F(x_i, p^u) \rightarrow y_i^{pred}$
- 2. Calculate a "loss" which measures how poorly y_i^{pred} predicts y_i^{true}
- 3. Adjust the parameters p^u to minimize your loss
- 4. Repeat until your loss stops decreasing

Linear fitting can be broken down into the following steps:

- 1. Define a function which mans $F(x, n^u) \rightarrow v^{pred}$
- 2. C But what if you can't trivially define a
- redicts y_itrue

- 3. A function for your problem?
- 4. Repeat until your loss stops decreasing Is there any hope for us then?

Linear Operators

0

- A linear operator is able to map a vector of inputs x_i to an output vector y_i
- We can represent all sorts of functions and transformations as a linear operator
 - Can we do the same thing when trying to understand high dimensional and abstract data sets

$$\begin{bmatrix} x_0 & \cdots & x_n \end{bmatrix} * \begin{bmatrix} w_{00} & \cdots & w_{0m} \\ \vdots & \ddots & \vdots \\ w_{n0} & \cdots & w_{nm} \end{bmatrix} + b = \begin{bmatrix} y_0 & \cdots & y_m \end{bmatrix}$$
Use the features of
our input as a basis
$$\begin{bmatrix} Represent our \\ unknown function as \\ a transformation \\ matrix \end{bmatrix}$$
Use our possible outputs as a basis

Linear Operators

- A linear operator is able to map a vector of inputs x_i to an output vector y_i
- Can we use the same set of fitting rules to • We can as a construct our matrix? linear or
 - Can we do the same thing when trying to understand high dimensional and abstract data sets

$$\begin{bmatrix} x_0 & \cdots & x_n \end{bmatrix} * \begin{bmatrix} w_{00} & \cdots & w_{0m} \\ \vdots & \ddots & \vdots \\ w_{n0} & \cdots & w_{nm} \end{bmatrix} + b = \begin{bmatrix} y_0 & \cdots & y_m \end{bmatrix}$$
Use the features of
our input as a basis
Represent our
unknown function as
a transformation
$$\begin{bmatrix} x_0 & \cdots & y_m \end{bmatrix}$$
Use our possible
outputs as a basis

0

Well yes, but actually no

What we defined is called a perceptron, unfortunately it faces the draw backs of some basic linear algebra

- The size of the matrix is defined by the length of the input and output vector
 - If x and y are scalars, you only have one coefficient to define their relationship
- A single multiplication step is not enough to encapsulate complicated relationship between variables
 - It is also not enough to encapsulate complicated forms of a function

Matrix Multiplication

- What if we do iterative multiplication?
 - Represent our function as consecutive linear operators
 - You can represent high order polynomials as a product of first order polynomials, and we know that we can represent complicated functions as polynomials via Taylor expansions

$$(((\vec{x} \times A) \times B) \times C) = \vec{y}$$

- Can increase number of variables by modifying the dimensions of B
- Multiple "internal" matrix operations can encapsulate more of the internal features of your functions

Matrix Multiplication

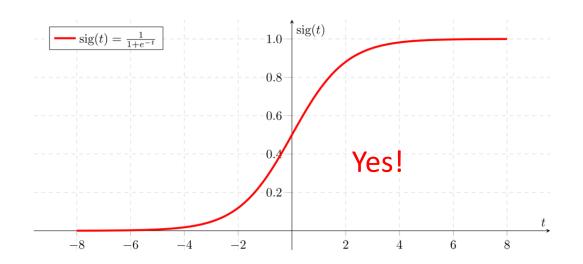
- What if we do iterative multiplication?
 - Represent our function as consecutive linear operators
 - You can represent high order polynomials as a product of first order polynomials, and we know that we can represent complicated functions as polynomials via Taylor expansions

$$\left(\left((\vec{x} \times A) \times B\right) \times C\right) = \vec{x} \times (ABC) = \vec{x} \times D = \vec{y}$$

- Can increase number of variables by modifying the dimensions of B
- Multiple " Associativity ruins this possibility e of the internal features of your functions

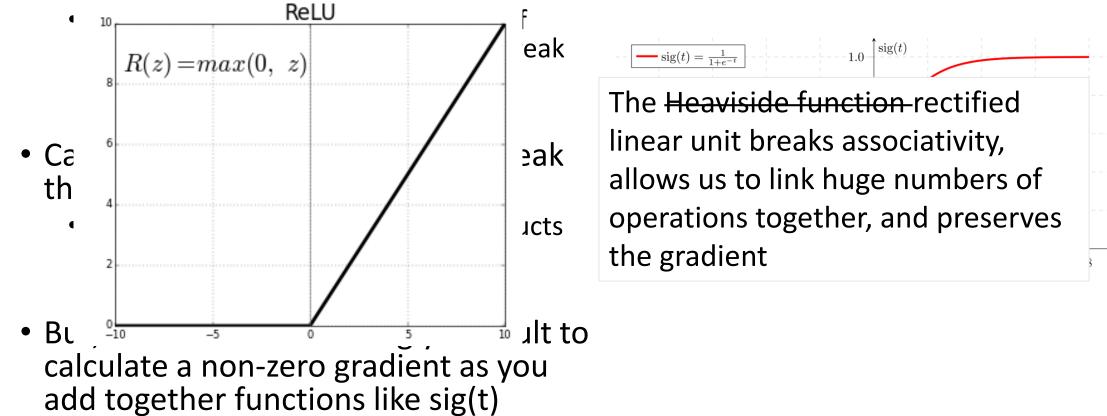
The Need for "Activation Functions"

- Is there a way to break associativity of our matrices?
 - What if we pass the output vector of each matrix through a function to break the associativity
- Can use activation functions to break this property!
 - Allows us to learn functions as products of iterative matrix multiplication
- But, it becomes increasingly difficult to calculate a non-zero gradient as you add together functions like sig(t)

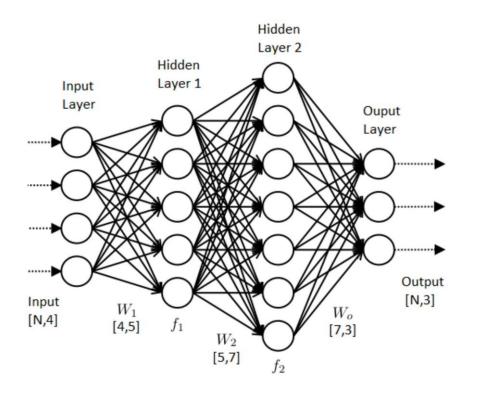


The Need for "Activation Functions"

• Is there a way to break associativity of our matrices?



A Feed Forward Neural Network



- We just described a *feed forward* (dense) neural network
- A series of matrix multiplication operations linked together by *activation functions*
- Machine learning uses fitting algorithms to adjust the values of the *weights* inside the matrices for them to model some underlying function

- Task: can a computer learn to identify handwritten numbers?
- Dataset:
 - Input: 28x28 images
 - Each pixel between 0-255
 - Output: either 0, 1, 2, ..., 8, 9
 - 60k images
- Our "function" the network is learning:
 - The relationship between image pixel intensity at a given location and the number that is drawn

333333333333333

The overview:

- 1. Load the dataset
 - Want to split into a piece we *train* on and a piece we *test* performance on
 - Possibly perform some *preprocessing* to the data showing it to our network
- 2. Construct our model
- 3. Set some training parameters
- 4. Train the network
 - Feed some data through as *forward propagation*
 - Use results to modify the network via *backwards propagation*
 - Repeat for multiple *epochs* over the entire dataset
- 5. Can check performs on the *testing* dataset

00	0	0	0	0	0	0	D	٥	0	0	0	0	0	0
11	1	١	١	1	1	1	/	1	١	1	1	١	/	1
22	2	2	ð	2	2	2	ደ	2	2	2	2	2	2	2
3 3	3	3	3	3	3	3	3	3	3	З	3	3	3	З
44	٤	ч	4	4	Ч	4	#	4	4	4	4	ч	¥	4
5 5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6 G	6	6	6	6	6	6	Ь	6	Ģ	6	6	6	6	b
77	7	7	7	7	ч	7	2	7	7	7	7	7	7	7
8 8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
99	9	9	9	q	٩	9	٩	β	٩	9	9	9	9	9


```
Import your python libraries to run the code
[ ] import os, sys
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds # needed to download mnist
import time
```

```
Create your datasets
```

```
[ ] (ds_train, ds_test), ds_info = tfds.load(
    'mnist',
    split=['train', 'test'],
    shuffle_files=True,
    as_supervised=True,
    with_info=True,
)
```

Task: Can a computer learn how to identify handwritten numbers?

333333333333333333 **7 7** 7 7 **7** クフフフィ S.

This block is just retrieving the data for us, and setting up some basic parameters

Telling tensorflow the name of the (ds_train, ds_test), ds_info = tfds.load(dataset we want to load 'mnist', 🔺 split=['train', 'test'], Telling tensorflow that we want to load shuffle files=True, the pre-split training and testing set as supervised=True, with_info=True, Randomize the order in which the images appear In addition to the image, also give us the label telling us what the number is Returns ds_info which is just some metadata about the dataset


```
def normalize_img(image, label):
```

```
data type of image starts as an 8-bit int, but networks work best when
inputs are normalized to max values ~1 (depends on type of data)
So, we want to make a function which transforms our image pixels to
go from range [0,255] -> [0., 1.]
```

```
return tf.cast(image, tf.float32) / 255., label
```

```
# Construct I/O pipeline for training set
ds train = ds train.map(
   # map -> before sending batches to GPU your CPU
    # will perform transoformation function
    normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
# Construct same I/O pipeline for testing set
ds test = ds test.map(
  normalize img, num parallel calls=tf.data.AUTOTUNE
# Note: Don't need to shuffle testing set
ds test = ds test.batch(128)
ds test = ds test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
--NORMAL--
```

map will apply a function to your dataset as it's being loaded into memory

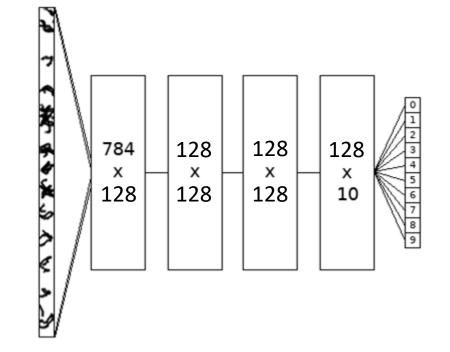
 num_parallel_calls is telling your computer how many images it should do this for at a time

shuffle is saying that you want the computer to re-arrange the order in which the images are fed into the network per *epoch*

batch is saying that when changing your weights, you first want to calculate the changes for 128 images and average those changes

prefetch tells the network how many images you want to pre-load when feeding them into the network

C	# A sequential model is constructed
-	# These are very nice if you have a "1D" model where each
	# layer feeds directly into the next
	<pre>dense_model = tf.keras.models.Sequential([</pre>
	<pre>tf.keras.layers.Flatten(input_shape=(28, 28)),</pre>
	<pre>tf.keras.layers.Dense(128, activation='relu'),</pre>
	<pre>tf.keras.layers.Dense(128, activation='relu'),</pre>
	<pre>tf.keras.layers.Dense(128, activation='relu'),</pre>
	tf.keras.layers.Dense(10)
])



Constructing the network architecture

- Unravels the 28x28 images into a 1D array
- 2 *hidden* layers inside of the network
- Uses a ReLU activation function between each layer
- Outputs to a vector of length 10
 - Each element is the networks confidence of the number being that specific digit

Setting some parameters for training

```
dense_model.compile(
    optimizer=tf.keras.optimizers.Adam(0.001),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
```

- **Optimizer**: An algorithm which tells our network how much it should adjust its weights when training
- Loss: The function which our network is trying to minimize
- **Metrics**: Other functions which we want the network to show us so we can monitor its performance

Categorical Cross Entropy Loss = $-\sum_{i=0}^{9} y_i^{\text{true}} * \log y_i^{\text{pred}}$

- y_i^{pred} = network's output value for that digit
- $y_i^{true} = 1$ if the real value, otherwise 0

0	<pre>dense_model.fit(ds_train, epochs=10, validation_data=ds_test,</pre>
)

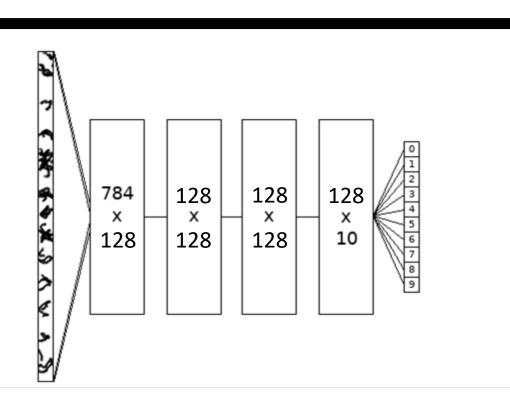
This function does all the training and validation for us

- Forward propagation
- Backward propagation
- Runs for 10 epochs

	<pre>dense_model.fit(ds_train, epochs=10, validation_data=ds_test,)</pre>	
--	---	--

This function does all the training and validation for us

- Forward propagation
- Backward propagation
- Runs for 10 epochs

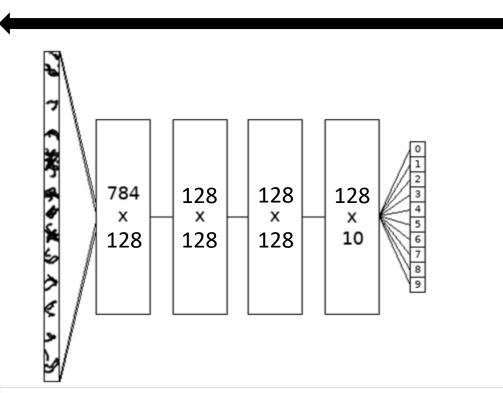


- 1. Network feeds the images through the network
- 2. Calculates the loss for each image

0	<pre>dense_model.fit(ds_train, epochs=10, validation_data=ds_test,)</pre>

This function does all the training and validation for us

- Forward propagation
- Backward propagation
- Runs for 10 epochs

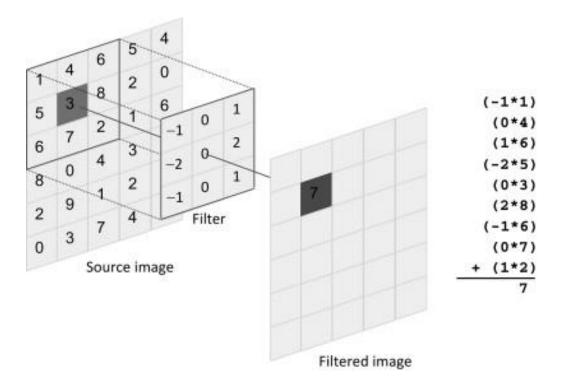


- 1. Network calculates the gradient associated with the loss of each image (via chain rule)
- 2. Adjusts weights in each matrix (based on loss and optimizer)

Convolutional Networks

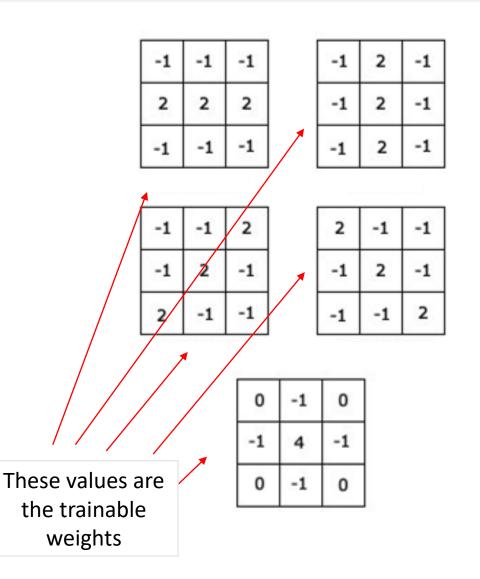
Convolution Matrices

- Use small matrices to extract nearest-neighbor features from your inputs
 - Matrices are then convoluted across the input
- Each network *layer* consists of multiple *filters*
 - Can be 1D, 2D, or 3D matrices
 - Kernel Size is the dimensions of the matrix
 - **Stride** is the distance the matrices move along inputs between extraction steps



Convolution Matrices

- Very good at extracting important features from an image
 - But also any dataset where order of variables in important!
- Nothing new, used in standard image recognition for a long time
 - Machine learning is used to have the algorithm decide what features to extract
 - Allows us to iteratively apply convolutions to extract increasingly abstract features



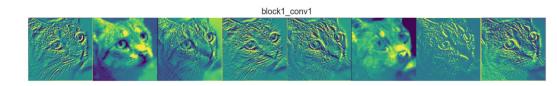
Convolutional Neural Networks

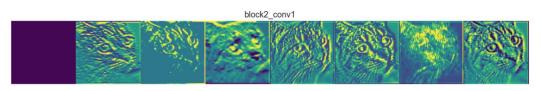
vec

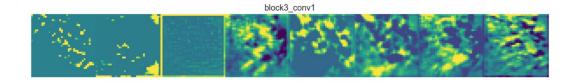
Standard CNN formation

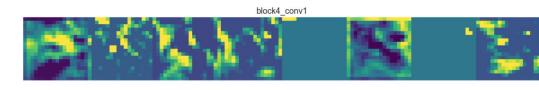
- Use multiple layers of convolutions
 - A single layer will consist of many filters
 - Layer outputs will be multiple featureextracted compressed "images"
 - Compression based on *stride* and *pooling*
- Final convolution layer fed into a *fully connected* layer (big matrix)

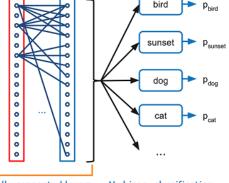
max pooling











fully connected layers Nx binary classification

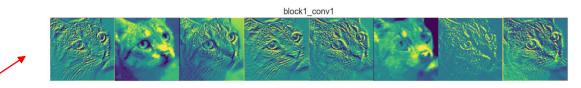
convolution

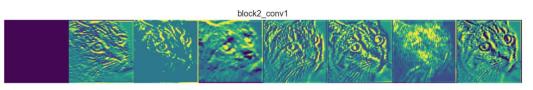
nonlinearity

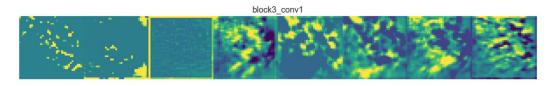
Convolutional Neural Networks

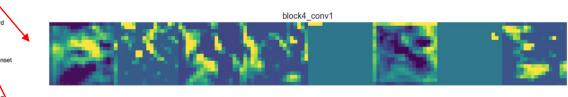
- ς Way to think about what's happening
 - Input data, which is an array of input features, is not always in the best representation of your data
 - Each filter transforms the input image into a new feature basis
 - The more convolution layers, the more abstract basis you are transforming your original inputs into
 - In QM, we are used to writing our wave function in the orthonormal basis of our Hamiltonian
 - This trivializes the problem, and is not a strategy unique to QM
 - If our network wants to model an unknown function, can represent it as a single matrix if our data is transformed into its corresponding orthonormal basis

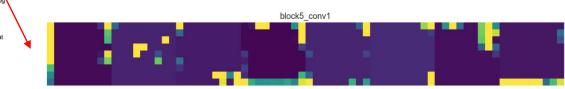
sification

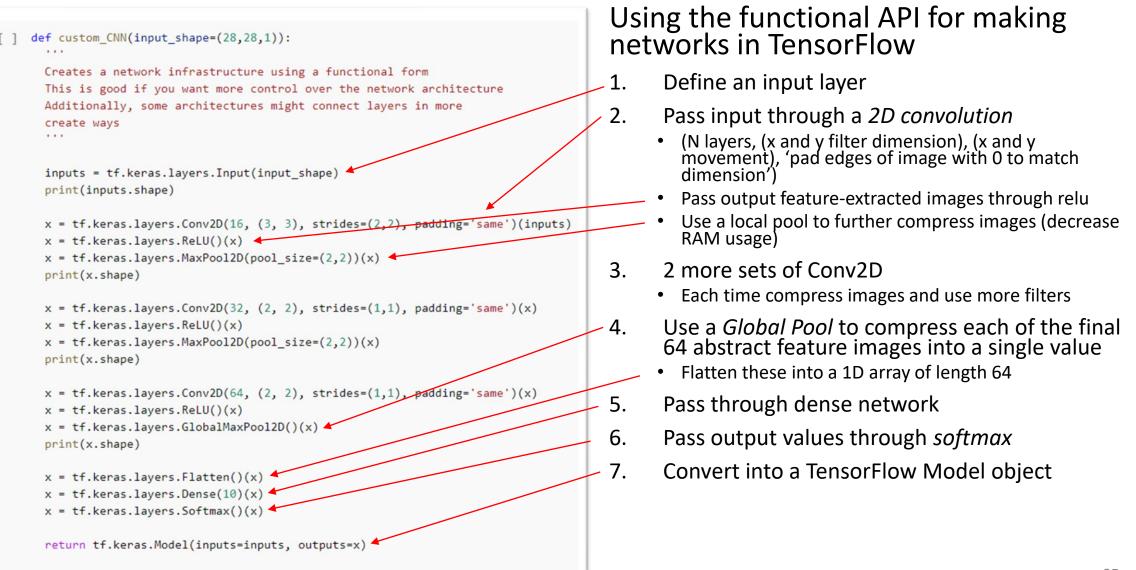


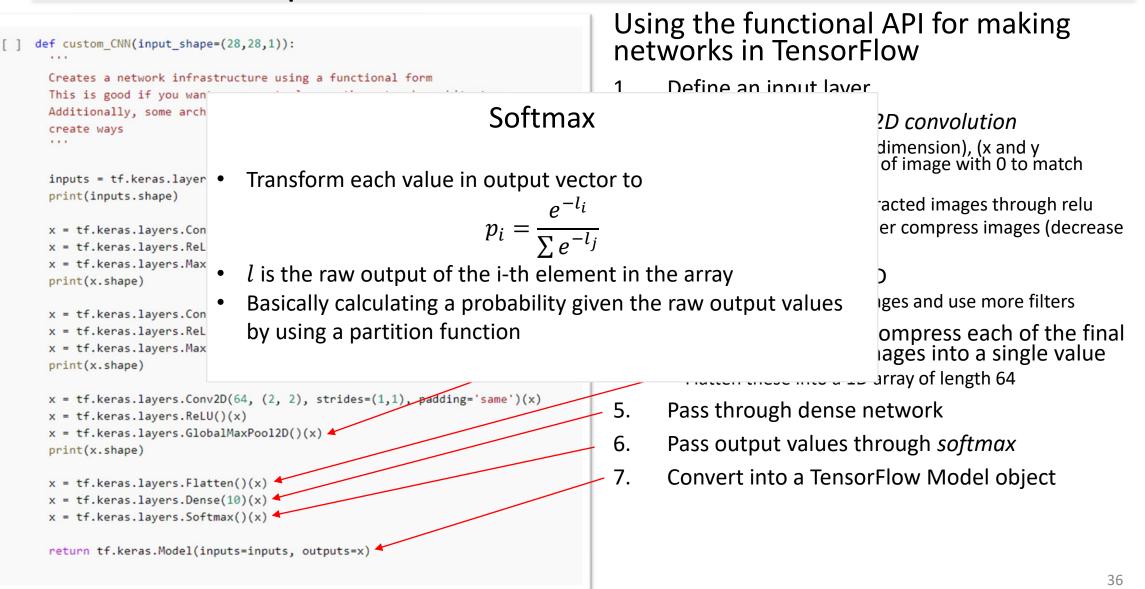










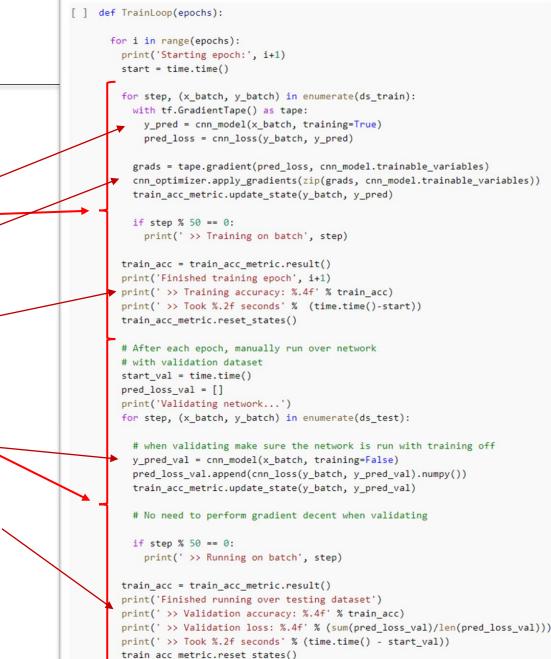



```
[ ] cnn_model = custom_CNN()
# Unlike before, can't automatically associate them to
# the network using compile
cnn_loss = tf.keras.losses.SparseCategoricalCrossentropy()
cnn_optimizer = tf.keras.optimizers.Adam(0.001)
train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
val_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
```

- Can now call the function to construct your network
- For this example we will be "manually" running a training loop
 - Must define our loss function, optimizer, and metrics as individual variables
 - Will not be associating with network in TensorFlow backend using compile

Performing training loop manually rather than using built-in functions

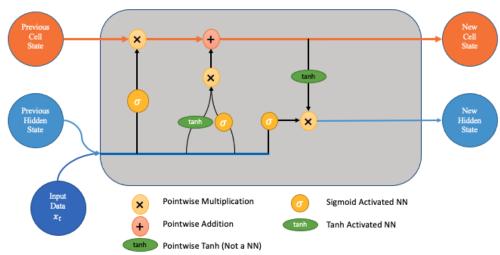
- Running over training set
 - Forwards propagation
 - Backwards propagation
 - Checking metrics on testing set
- Evaluating over testing set -
 - Only forward pass
 - Keep track of accuracy and loss for each batch
 - Check accuracy and loss after finishing
- Repeat for desired number of epochs



Other Common Networks

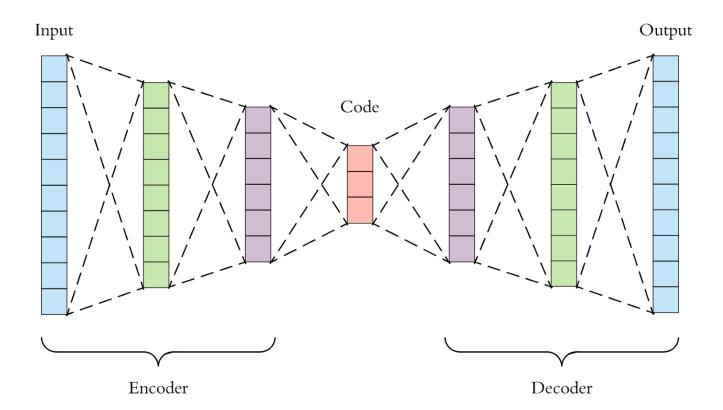
RNNs (Long Short-term Memory)

- In ordered data, it can be important to know what came before previous data points
 - e.g. your phone predicting the next word you are going to type
- Convolutions can work, but will have problems with variable length input arrays
 - e.g. number of words in a sentence
 - Can also use LSTM to regularize data of variable length before feeding into later network layers
 - e.g. data is an array of molecules, each with 6 features (position and momentum)
 - If numbers of molecules isn't the same in each datapoint, can pass through LSTM layer before a fully connected layer



Auto Encoders

- 1. Use first half of network to compress your input into a smaller dimensionality
- 2. Use second half of network to decompress back to the original size
- 3. If the output matches the input, then the network learned to encode the input information in a low dimensional *latent space*

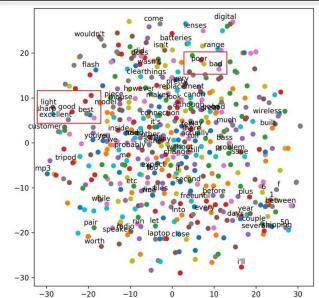


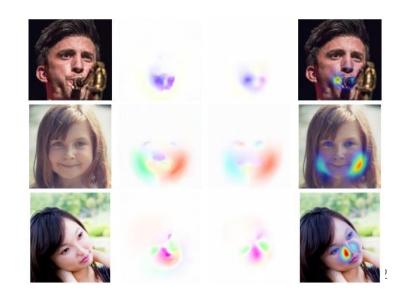
Auto Encoders – Uses

- Unsupervised learning
 - Auto-encoders don't need labeled data, but will still map similar inputs to similar spaces in latent space
 - Can use clusters in latent space to classify data post-training
- Word embeddings <u>https://bit.ly/3sGrLku</u>
 - Use auto-encoder on words
 - Input is a very long array of length O(dictionary), 1 if it is the word, 0 if not
 - Latent space is array of 50 floats
 - Allows computer to map words to a high dimensional vector space
 - Used as the first step in all levels of language processing

Defect detection

- Pass images through an auto-encoder trained on normal photos
- If there is something wrong (e.g. slight photoshopping marks) that wasn't in training data, network won't know how to encode or decode it properly
- When looking at output, the *defects* will be made more pronounced





Generative Networks

Train a network to produce something new

- Use two networks
 - One to generate datapoints
 - One to differentiate real from generated data points
- Generative text
 - See <u>GPT-2</u> or GPT-3
 - Takes insane amount of training data
- Image generation
- Data simulation
 - MC generation can be computationally intensive and slow, running a pre-trained network is generally quite fast

Closing Remarks – A Cautionary Message

Telling the network to "learn the function" can be dangerous

- It can be hard for us to gain intuition about what it is learning
- The network might not be learning what we want it to
 - Ex: Neural networks don't identify stop signs by being red octagons
 - If there is a bias in your data, the networks will happily exploit that to "cheat"
- Machine learning is **very** inefficient
 - Ex: Have to look at O(10000) images of numbers multiple times to know how to differentiate them
 - My opinion: Nothing intelligent about "Artificial Intelligence"

Despite this, neural networks are very powerful tools

- With great power comes great responsibility
 - Ex: social media and targeted ads
 - The strongest computer algorithms in the world are actively being used to exploit human dopamine responses to get them addicted to social media and sell them products