
An Introduction to
Neural Networks

Bjorn Burkle
Interactive python 
notebook!



Outline
• Traditional Fitting

• Basics of Neural Networks
• Fully connected (dense) networks

• Convolutional Networks

• Other common networks

2/15/2022 2



Traditional Fitting

• Traditionally, we learn to fit data 
via linear regression
• Start with some data
• Give your computer an assumed 

function
• Computer uses an algorithm to 

“learn” the best set of coefficients 
which fit your data

• But what is the computer the 
computer actually doing?

2/15/2022 3

y = mx + b



Traditional Fitting

1. Start with some data

2. Supply a function which 
should fit your data
• y = mx + b

3. Computer makes an initial 
guess at coefficients

4. Computer calculates a metric 
which tells you how bad your 
fit is
• MSE, 𝜒2, etc

2/15/2022 4



Traditional Fitting

4. Computer calculates a metric 
which tells you how bad your 
fit is
• MSE, 𝜒2, etc

5. Computer calculates gradient
of the metric for each 
variable

2/15/2022 5

y6

f(x6)



Traditional Fitting

6. Computer simultaneously 
minimizes the gradient for all 
variables

7. Adjust variables in downward 
direction of gradient

2/15/2022 6

y6

f(x6)



Traditional Fitting

8. Procedure can be iterated 
many times
• Often stops once the fit falls into 

a minimum, i.e. the gradient 
stops decreasing

2/15/2022 7



Traditional Fitting

Linear fitting can be broken down into the following steps:
1. Define a function which maps F(xi, p

u) → yi
pred

2. Calculate a “loss” which measures how poorly yi
pred predicts yi

true

3. Adjust the parameters pu to minimize your loss

4. Repeat until your loss stops decreasing

2/15/2022 8



Traditional Fitting

Linear fitting can be broken down into the following steps:
1. Define a function which maps F(xi, p

u) → yi
pred

2. Calculate a “loss” which measures how poorly yi
pred predicts yi

true

3. Adjust the parameters pu to minimize your loss

4. Repeat until your loss stops decreasing

2/15/2022 9

But what if you can’t trivially define a 
function for your problem?

Is there any hope for us 
then?



Linear Operators
• A linear operator is able to map a vector of inputs xi to an output 

vector yj

• We can represent all sorts of functions and transformations as a 
linear operator
• Can we do the same thing when trying to understand high dimensional and 

abstract data sets

2/15/2022 10

𝑥0 ⋯ 𝑥𝑛 ∗

𝑤00 ⋯ 𝑤0𝑚

⋮ ⋱ ⋮
𝑤𝑛0 ⋯ 𝑤𝑛𝑚

+ 𝑏 = 𝑦0 ⋯ 𝑦𝑚

Use the features of 
our input as a basis 

Use our possible 
outputs as a basis

Represent our 
unknown function as 
a transformation 
matrix



Linear Operators
• A linear operator is able to map a vector of inputs xi to an output 

vector yj

• We can represent all sorts of functions and transformations as a 
linear operator
• Can we do the same thing when trying to understand high dimensional and 

abstract data sets

2/15/2022 11

𝑥0 ⋯ 𝑥𝑛 ∗

𝑤00 ⋯ 𝑤0𝑚

⋮ ⋱ ⋮
𝑤𝑛0 ⋯ 𝑤𝑛𝑚

+ 𝑏 = 𝑦0 ⋯ 𝑦𝑚

Use the features of 
our input as a basis 

Use our possible 
outputs as a basis

Represent our 
unknown function as 
a transformation 
matrix

Can we use the same set of fitting rules to 
construct our matrix?



2/15/2022 12



Perceptron
What we defined is called a perceptron, unfortunately it faces the draw 
backs of some basic linear algebra

• The size of the matrix is defined by the length of the input and output 
vector
• If x and y are scalars, you only have one coefficient to define their relationship

• A single multiplication step is not enough to encapsulate complicated 
relationship between variables
• It is also not enough to encapsulate complicated forms of a function

2/15/2022 13



Matrix Multiplication
• What if we do iterative multiplication?

• Represent our function as consecutive linear operators

• You can represent high order polynomials as a product of first order 
polynomials, and we know that we can represent complicated functions as 
polynomials via Taylor expansions

• Can increase number of variables by modifying the dimensions of B

• Multiple “internal” matrix operations can encapsulate more of the internal 
features of your functions

2/15/2022 14

((( Ԧ𝑥 × 𝐴) × 𝐵) × 𝐶) = Ԧ𝑦



Matrix Multiplication
• What if we do iterative multiplication?

• Represent our function as consecutive linear operators

• You can represent high order polynomials as a product of first order 
polynomials, and we know that we can represent complicated functions as 
polynomials via Taylor expansions

• Can increase number of variables by modifying the dimensions of B

• Multiple “internal” matrix operations can encapsulate more of the internal 
features of your functions

2/15/2022 15

((( Ԧ𝑥 × 𝐴) × 𝐵) × 𝐶) = Ԧ𝑦Ԧ𝑥 × 𝐴 × 𝐵 × 𝐶 = Ԧ𝑥 × 𝐴𝐵𝐶 = Ԧ𝑥 × 𝐷 = Ԧ𝑦

Associativity ruins this possibility



The Need for “Activation Functions”
• Is there a way to break associativity of 

our matrices?
• What if we pass the output vector of 

each matrix through a function to break 
the associativity

• Can use activation functions to break 
this property!
• Allows us to learn functions as products 

of iterative matrix multiplication

• But, it becomes increasingly difficult to 
calculate a non-zero gradient as you 
add together functions like sig(t)

2/15/2022 16

Yes!



The Need for “Activation Functions”
• Is there a way to break associativity of 

our matrices?
• What if we pass the output vector of 

each matrix through a function to break 
the associativity

• Can use activation functions to break 
this property!
• Allows us to learn functions as products 

of iterative matrix multiplication

• But, it becomes increasingly difficult to 
calculate a non-zero gradient as you 
add together functions like sig(t)

2/15/2022 17

Yes!

The Heaviside function rectified 
linear unit breaks associativity, 
allows us to link huge numbers of 
operations together, and preserves 
the gradient



A Feed Forward Neural Network
• We just described a feed forward 

(dense) neural network

• A series of matrix multiplication 
operations linked together by 
activation functions

• Machine learning uses fitting 
algorithms to adjust the values of the 
weights inside the matrices for them 
to model some underlying function

2/15/2022 18



Example – MNIST 

2/15/2022 19



Example – MNIST

2/15/2022 20

• Task: can a computer learn to identify 
handwritten numbers?

• Dataset:
• Input: 28x28 images

• Each pixel between 0-255

• Output: either 0, 1, 2, …, 8, 9
• 60k images

• Our “function” the network is learning:
• The relationship between image pixel intensity  

at a given location and the number that is 
drawn



Example – MNIST

2/15/2022 21

The overview:

1. Load the dataset
• Want to split into a piece we train on and a piece 

we test performance on
• Possibly perform some preprocessing to the data 

showing it to our network

2. Construct our model

3. Set some training parameters

4. Train the network
• Feed some data through as forward propagation
• Use results to modify the network via backwards 

propagation
• Repeat for multiple epochs over the entire dataset

5. Can check performs on the testing dataset



Example – MNIST

Task: Can a computer learn how to 
identify handwritten numbers?

2/15/2022 22



Example – MNIST

2/15/2022 23

This block is just retrieving the data for us, and setting up some 
basic parameters

Telling tensorflow the name of the 
dataset we want to load

Telling tensorflow that we want to load 
the pre-split training and testing set

Randomize the order in which the 
images appear

In addition to the image, also give us 
the label telling us what the number is

Returns ds_info which is just some 
metadata about the dataset



Example – MNIST

2/15/2022 24

map will apply a function to your 
dataset as it’s being loaded into 
memory
• num_parallel_calls is telling your 

computer how many images it 
should do this for at a time

shuffle is saying that you want the 
computer to re-arrange the order in 
which the images are fed into the 
network per epoch

batch is saying that when changing your 
weights, you first want to calculate the 
changes for 128 images and average 
those changes

prefetch tells the network how many 
images you want to pre-load when 
feeding them into the network



Example - MNIST

Constructing the network architecture

• Unravels the 28x28 images into a 1D array

• 2 hidden layers inside of the network

• Uses a ReLU activation function between each layer

• Outputs to a vector of length 10
• Each element is the networks confidence of the number being that specific digit

2/15/2022 25

128 128 128

128 128 128



Example - MNIST

2/15/2022 26

Setting some parameters for training

• Optimizer: An algorithm which tells our network how 
much it should adjust its weights when training

• Loss: The function which our network is trying to minimize

• Metrics: Other functions which we want the network to 
show us so we can monitor its performance

Categorical Cross Entropy

Loss = −

𝑖=0

9

𝑦𝑖
true ∗ log 𝑦𝑖

pred

• yi
pred = network’s output value for that 

digit
• yi

true = 1 if the real value, otherwise 0



Example – MNIST 

This function does all the 
training and validation 
for us

• Forward propagation

• Backward propagation

• Runs for 10 epochs

2/15/2022 27



Example – MNIST 

This function does all the 
training and validation 
for us

• Forward propagation

• Backward propagation

• Runs for 10 epochs

2/15/2022 28

1. Network feeds the images through the network
2. Calculates the loss for each image

128 128 128

128 128 128



Example – MNIST 

2/15/2022 29

1. Network calculates the gradient associated with 
the loss of each image (via chain rule)

2. Adjusts weights in each matrix (based on loss and 
optimizer)

This function does all the 
training and validation 
for us

• Forward propagation

• Backward propagation

• Runs for 10 epochs

128 128 128

128 128 128



Convolutional Networks

2/15/2022 30



Convolution Matrices
• Use small matrices to extract 

nearest-neighbor features from 
your inputs
• Matrices are then convoluted across 

the input

• Each network layer consists of 
multiple filters
• Can be 1D, 2D, or 3D matrices
• Kernel Size is the dimensions of the 

matrix
• Stride is the distance the matrices 

move along inputs between 
extraction steps

2/15/2022 31



Convolution Matrices
• Very good at extracting important 

features from an image
• But also any dataset where order of 

variables in important!

• Nothing new, used in standard 
image recognition for a long time
• Machine learning is used to have the 

algorithm decide what features to 
extract

• Allows us to iteratively apply 
convolutions to extract increasingly 
abstract features

2/15/2022 32

These values are 
the trainable 

weights



Convolutional Neural Networks
Standard CNN formation
• Use multiple layers of convolutions

• A single layer will consist of many filters
• Layer outputs will be multiple feature-

extracted compressed “images”
• Compression based on stride and pooling

• Final convolution layer fed into a fully 
connected layer (big matrix)

2/15/2022 33



Convolutional Neural Networks
• Standard CNN formation

• Use multiple layers of convolutions
• A single layer will consist of many filters
• Layer outputs will be multiple feature-

extracted compressed “images”
• Compression based on stride and pooling

• Final convolution layer fed into a fully 
connected layer (big matrix)

2/15/2022 34

Way to think about what’s happening
• Input data, which is an array of input features, is 

not always in the best representation of your 
data

• Each filter transforms the input image into a 
new feature basis
• The more convolution layers, the more 

abstract basis you are transforming your 
original inputs into

• In QM, we are used to writing our wave 
function in the orthonormal basis of our 
Hamiltonian
• This trivializes the problem, and is not a 

strategy unique to QM
• If our network wants to model an 

unknown function, can represent it as a 
single matrix if our data is transformed into 
its corresponding orthonormal basis



CNN Example - MNIST
Using the functional API for making 
networks in TensorFlow
1. Define an input layer

2. Pass input through a 2D convolution
• (N layers, (x and y filter dimension), (x and y 

movement), ‘pad edges of image with 0 to match 
dimension’)

• Pass output feature-extracted images through relu
• Use a local pool to further compress images (decrease 

RAM usage)

3. 2 more sets of Conv2D
• Each time compress images and use more filters

4. Use a Global Pool to compress each of the final 
64 abstract feature images into a single value
• Flatten these into a 1D array of length 64

5. Pass through dense network

6. Pass output values through softmax

7. Convert into a TensorFlow Model object

2/15/2022 35



CNN Example - MNIST
Using the functional API for making 
networks in TensorFlow
1. Define an input layer

2. Pass input through a 2D convolution
• (N layers, (x and y filter dimension), (x and y 

movement), ‘pad edges of image with 0 to match 
dimension’)

• Pass output feature-extracted images through relu
• Use a local pool to further compress images (decrease 

RAM usage)

3. 2 more sets of Conv2D
• Each time compress images and use more filters

4. Use a Global Pool to compress each of the final 
64 abstract feature images into a single value
• Flatten these into a 1D array of length 64

5. Pass through dense network

6. Pass output values through softmax

7. Convert into a TensorFlow Model object

2/15/2022 36

Softmax

• Transform each value in output vector to

𝑝𝑖 =
𝑒−𝑙𝑖

σ𝑒−𝑙𝑗

• 𝑙 is the raw output of the i-th element in the array
• Basically calculating a probability given the raw output values 

by using a partition function



CNN Example - MNIST

• Can now call the function to construct your network

• For this example we will be “manually” running a training loop
• Must define our loss function, optimizer, and metrics as individual variables

• Will not be associating with network in TensorFlow backend using compile

2/15/2022 37



CNN Example - MNIST
Performing training loop manually 
rather than using built-in functions

• Running over training set
• Forwards propagation
• Backwards propagation
• Checking metrics on testing set

• Evaluating over testing set
• Only forward pass

• Keep track of accuracy and loss for each 
batch

• Check accuracy and loss after finishing

• Repeat for desired number of 
epochs

2/15/2022 38



Other Common Networks

2/15/2022 39



RNNs (Long Short-term Memory)
• In ordered data, it can be important to know what came before 

previous data points
• e.g. your phone predicting the next word you are going to type

• Convolutions can work, but will have problems with variable length 
input arrays
• e.g. number of words in a sentence

• Can also use LSTM to regularize
data of variable length before feeding
into later network layers
• e.g. data is an array of molecules, each

with 6 features (position and momentum)

• If numbers of molecules isn’t the same in
each datapoint, can pass through LSTM 
layer before a fully connected layer

2/15/2022 40



Auto Encoders
1. Use first half of network to compress your input into a smaller 

dimensionality
2. Use second half of network to decompress back to the original size
3. If the output matches the input, then the network learned to encode the 

input information in a low dimensional latent space

2/15/2022 41



Auto Encoders – Uses
• Unsupervised learning

• Auto-encoders don’t need labeled data, but will still map similar 
inputs to similar spaces in latent space

• Can use clusters in latent space to classify data post-training

• Word embeddings - https://bit.ly/3sGrLku
• Use auto-encoder on words

• Input is a very long array of length O(dictionary), 1 if it is the word, 0 if 
not

• Latent space is array of 50 floats

• Allows computer to map words to a high dimensional vector 
space

• Used as the first step in all levels of language processing

• Defect detection
• Pass images through an auto-encoder trained on normal photos
• If there is something wrong (e.g. slight photoshopping marks) 

that wasn’t in training data, network won’t know how to encode 
or decode it properly

• When looking at output, the defects will be made more 
pronounced

2/15/2022 42

https://bit.ly/3sGrLku


Generative Networks
Train a network to produce something 
new
• Use two networks

• One to generate datapoints
• One to differentiate real from generated 

data points

• Generative text
• See GPT-2 or GPT-3
• Takes insane amount of training data

• Image generation
• Data simulation

• MC generation can be computationally 
intensive and slow, running a pre-trained 
network is generally quite fast

2/15/2022 43

Real Fake

https://huggingface.co/gpt2


Closing Remarks – A Cautionary Message
Telling the network to “learn the function” can be dangerous

• It can be hard for us to gain intuition about what it is learning

• The network might not be learning what we want it to
• Ex: Neural networks don’t identify stop signs by being red octagons
• If there is a bias in your data, the networks will happily exploit that to “cheat”

• Machine learning is very inefficient
• Ex: Have to look at O(10000) images of numbers multiple times to know how to differentiate 

them
• My opinion: Nothing intelligent about “Artificial Intelligence”

Despite this, neural networks are very powerful tools

• With great power comes great responsibility
• Ex: social media and targeted ads
• The strongest computer algorithms in the world are actively being used to exploit human 

dopamine responses to get them addicted to social media and sell them products

2/15/2022 44


